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ABSTRACT 
The skyline of a set of d-dimensional points contains the points 
that are not dominated by any other point on all dimensions. 
Skyline computation has recently received considerable attention 
in the database community, especially for progressive (or online) 
algorithms that can quickly return the first skyline points without 
having to read the entire data file. Currently, the most efficient 
algorithm is NN (nearest neighbors), which applies the divide-
and-conquer framework on datasets indexed by R-trees. Although 
NN has some desirable features (such as high speed for returning 
the initial skyline points, applicability to arbitrary data 
distributions and dimensions), it also presents several inherent 
disadvantages (need for duplicate elimination if d>2, multiple 
accesses of the same node, large space overhead). In this paper we 
develop BBS (branch-and-bound skyline), a progressive algorithm 
also based on nearest neighbor search, which is IO optimal, i.e., it 
performs a single access only to those R-tree nodes that may 
contain skyline points. Furthermore, it does not retrieve duplicates 
and its space overhead is significantly smaller than that of NN. 
Finally, BBS is simple to implement and can be efficiently applied 
to a variety of alternative skyline queries. An analytical and 
experimental comparison shows that BBS outperforms NN 
(usually by orders of magnitude) under all problem instances.   

1. INTRODUCTION 
The skyline operator is important for several applications 
involving multi-criteria decision making. Given a set of objects 
p1, p2,.., pN , the operator returns all objects pi such that pi is not 
dominated by another object pj. Using the common example in the 
literature, assume in Figure 1.1 that we have a set of hotels and for 
each hotel we store its distance from the beach (x axis) and its 
price (y axis). The most interesting hotels are the ones (a, i, k) for 
which there is no point that is better on both dimensions. 
Borzsonyi et al. [BKS01] propose an SQL syntax for the skyline 
operator, according to which the above query would be expressed 
as: [Select *, From Hotels, Skyline of Price min, Distance min], 
where min indicates that the price and the distance attributes 
should be minimized. The syntax can also capture different 
conditions (such as max), joins, group-by and so on. For 
simplicity, we assume that skylines are computed with respect to 
min conditions on all dimensions; however, all methods discussed 
can be applied with any combination of conditions. 
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Figure 1.1: Example dataset and skyline 

Using the min condition, a point pi dominates1 another point pj if 
and only if the coordinate of pi on any axis is not larger than the 
corresponding coordinate of pj. Informally, this implies that pi is 
preferable to pj according to any preference (scoring) function 
which is monotone on all attributes. For instance, hotel a in 
Figure 1.1 is better than hotels b and e since it is closer to the 
beach and cheaper (independently of the relative importance of 
the distance and price attributes). Furthermore, for every point p 
in the skyline there exists a monotone function f such that p 
minimizes f [BKS01].  

Skylines are related to several other well-known problems, 
including convex hulls, top-K queries and nearest neighbor 
search. In particular, the convex hull contains the subset of 
skyline points that may be optimal only for linear preference 
functions (as opposed to any monotone function). Böhm and 
Kriegel [BK01] propose an algorithm for convex hulls, which 
applies branch and bound search on datasets indexed by R-trees. 
In addition, several main-memory algorithms have been proposed 
for the case that the whole dataset can fit in memory [PS85]. 

Top-K (or ranked) queries retrieve the best K objects that 
minimize a specific preference function. As an example, given the 
preference function f(x,y)=x+y, the top-3 query, for the dataset in 
Figure 1.1, retrieves <i,5>, <h,7>, <m,8> (in this order), where the 
number with each point indicates its score. The difference from 
skyline queries is that the output changes according to the input 
function and the retrieved points are not guaranteed to be part of 
the skyline (h and m are dominated by i). Recent database 
techniques for top-K queries include Prefer [HKP01] and Onion 
[CBC+00] that are based on pre-materialization and convex hulls, 
respectively. Several methods have been proposed for combining 
the results of multiple top-K queries [F98, NCS+01]. 

Nearest neighbor queries specify a query point q and output 
the objects closest to q, in increasing order of their distance. 
Existing database algorithms assume that the objects are indexed 
by an R-tree (or some other data-partition method) and apply 

                                                                 
1 According to this definition two, or more, points with the same 

coordinates can be part of the skyline.   
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branch-and-bound search. In particular, the depth-first algorithm 
of [RKV95] starts from the root of the R-tree and recursively 
visits the entry closest to the query point. Entries, which are 
farther than the nearest neighbor already found, are pruned. The 
best-first algorithm of [HS99] inserts the entries of the visited 
nodes in a heap, and follows the one closest to the query point. 
The relation between skyline queries and nearest neighbor search 
has been exploited by previous skyline algorithms and will be 
discussed in Section 2. 

Skylines, and other directly related problems such as multi-
objective optimization [S86], maximum vectors [KPL75, SM88, 
M91] and the contour problem [M74], have been extensively 
studied and numerous algorithms have been proposed for main-
memory processing. To the best our knowledge, however, the first 
work that addresses skylines in the context of databases is 
[BKS01], which develops algorithms based on block nested 
loops, divide-and-conquer and index scanning. Tan et al. 
[TEO01] propose progressive algorithms that can output skyline 
points without having to scan the entire data input. Finally, 
Kossmann et al. [KRR02] present an improved algorithm, called 
NN due to its reliance on nearest neighbor search, which applies 
the divide-and-conquer framework on datasets indexed by R-trees. 
The experimental evaluation of [KRR02] shows that NN 
outperforms previous algorithms in terms of overall performance 
and general applicability independently of the dataset 
characteristics, while it supports on-line processing efficiently.   
Despite its advantages, NN has also some serious shortcomings 
such as need for duplicate elimination, multiple node visits and 
large space requirements.  

Motivated by this fact, we propose a progressive algorithm 
called BBS (branch and bound skyline), which, like NN, is based 
on nearest neighbor search on multi-dimensional access methods, 
but (unlike NN) it is optimal in terms of node accesses. BBS 
incorporates the advantages of NN, without sharing its 
shortcomings. We experimentally and analytically show that BBS 
outperforms NN (usually by orders of magnitudes) both in terms 
of CPU and IO costs for all problem instances, while incurring 
less space overhead. In addition to its efficiency, the proposed 
algorithm is simple and easily extendible to several variations of 
skyline queries.  

The rest of the paper is organized as follows: Section 2 
reviews previous secondary-memory algorithms for skyline 
computation, focusing more on NN since it is the most recent and 
efficient algorithm. Section 3, analyzes the shortcomings of NN 
and introduces BBS, providing a cost model for its expected 
performance and a proof of its optimality. Section 4 proposes 
alternative skyline queries and discusses their processing using 
BBS. Section 5 experimentally evaluates BBS, comparing it 
against NN under a variety of settings. Finally, Section 6 
concludes the paper with some directions for future work.    

2. RELATED WORK 
This section surveys existing secondary-memory algorithms for 
computing skylines, namely: (1) block nested loop, (2) divide-
and-conquer, (3) bitmap, (4) index and (5) nearest neighbor. 
Specifically, (1-2) are proposed in [BKS01], (3-4) in [TEO01] 
and (5) in [KRR02]. We do not consider the sorted list scan, and 
the B-tree algorithms of [BKS01] due to their limited applicability 
(only for two dimensions) and poor performance, respectively.  

2.1 Block Nested Loop (BNL)  
Intuitively, a straightforward approach to compute the skyline is 
to compare each point p with every other point; if p is not 
dominated, then it is a part of the skyline. BNL builds on this 
concept by scanning the data file and keeping a list of candidate 
skyline points in main memory. The first data point is inserted 
into the list. For each subsequent point p, there are three cases:  
(i) If p is dominated by any point in the list, it is discarded as it is 
not part of the skyline. 
(ii) If p dominates any point in the list, it is inserted into the list, 
and all points in the list dominated by p are dropped. 
(iii) If p is neither dominated, nor dominates, any point in the list, 
it is inserted into the list as it may be part of the Skyline. 

The list is self-organizing because every point found 
dominating other points is moved to the top. This reduces the 
number of comparisons as points that dominate multiple other 
points are likely to be checked first. A problem of BNL is that the 
list may become larger than the main memory. When this 
happens, all points falling in third case (cases (i) and (ii) do not 
increase the list size), are added to a temporary file. This fact 
necessitates multiple passes of BNL. In particular, after the 
algorithm finishes scanning the data file, only points that were 
inserted in the list before the creation of the temporary file are 
guaranteed to be in the skyline and are output. The remaining 
points must be compared against the ones in the temporary file. 
Thus, BNL has to be executed again, this time using the 
temporary (instead of the data) file as input.  

The advantage of BNL is its wide applicability, since it can 
be used for any dimensionality without indexing or sorting the 
data file. Its main problems are the reliance on main memory (a 
small memory may lead to numerous iterations) and its 
inadequacy for on-line processing (it has to read the entire data 
file before it returns the first skyline point).  

2.2 Divide-and-Conquer (D&C)  
The D&C approach divides the dataset into several partitions so 
that each partition fits in memory. Then, the partial skyline of the 
points in every partition is computed using a main-memory 
algorithm (e.g., [SM88, M91]), and the final skyline is obtained 
by merging the partial ones. Figure 2.1 shows an example using 
the dataset of Figure 1.1. The data space is divided into 4 
partitions s1, s2, s3, s4, with partial skylines {a,c,g}, {d}, {i}, 
{m,k}, respectively. In order to obtain the final skyline, we need 
to remove those points that are dominated by some point in other 
partitions. Obviously all points in the skyline of s3 must appear in 
the final skyline, while those in s2 are discarded immediately 
because they are dominated by any point in s3 (in fact s2 needs to 
be considered only if s3 is empty). Each skyline point in s1 is 
compared only with points in s3, because no point in s2 or s4 can 
dominate those in s1. In this example, points c,g are removed 
because they are dominated by i. Similarly, the skyline of s4 is 
also compared with points in s3, which results in the removal of 
m. Finally, the algorithm terminates with the remaining points 
{a,i,k}. D&C is efficient only for small datasets (e.g., if the entire 
dataset fits in memory then the algorithm requires only one 
application of a main-memory skyline algorithm). For large 
datasets, the partitioning process requires reading and writing the 
entire dataset at least once, thus incurring significant IO cost. 
Further, this approach is not suitable for on-line processing 
because it cannot report any skyline until the partitioning phase 
completes. 



x

y
b

a

i k

h

g

d

f

e

c

l

o
1 2 3 4 5 6 7 8 9 10

1
2

3

4

5

6

7

8

9

10

m

n

s1 s2

s3 s4

 
Figure 2.1: Divide and conquer 

2.3 Bitmap  
This technique encodes in bitmaps all the information required to 
decide whether a point is in the Skyline. A data point p = (p1, 
p2, ..., pd), where d is the number of dimensions, is mapped to a 
m-bit vector, where m is the total number of distinct values over 
all dimensions. Let ki be the total number of distinct values on the 
ith dimension (i.e., m =∑i=1~dki). In Figure 1.1, for example, there 
are k1=k2=10 distinct values on the x-, y-dimensions and m =20. 
Assume that pi is the ji-th smallest number on the ith axis; then, it 
is represented by ki bits, where the (ki − ji +1) most significant bits 
are 1, and the remaining ones 0. Table 2.1 shows the bitmaps for 
points in Figure 1.1. Since point a has the smallest value (1) on 
the x-axis, all bits of a1 are 1. Similarly, since a2 (=9) is the 9-th 
smallest on the y-axis, the first 10−9+1=2 bits of its representation 
are 1, while the remaining ones are 0.  
 

id coordinate bitmap representation 
a  (1,9) (1111111111, 1100000000) 
b (2,10) (1111111110, 1000000000) 
c (4,8) (1111111000, 1110000000) 
d (6,7) (1111100000, 1111000000) 
e (9,10) (1100000000, 1000000000) 
f (7,5) (1111000000, 1111110000) 
g (5,6) (1111110000, 1111100000) 
h (4,3) (1111111000, 1111111100) 
i (3,2) (1111111100, 1111111110) 
k (9,1) (1100000000, 1111111111) 
l (10,4) (1000000000, 1111111000) 
m (6,2) (1111100000, 1111111110) 
n (8,3) (1110000000, 1111111100) 

Table 2.1: The bitmap approach 

Consider now that we want to decide whether a point, e.g., c with 
bitmap representation (1111111000, 1110000000), belongs to the 
skyline. The most significant bits whose value is 1, are the 4th and 
the 8th, on dimensions x and y, respectively. The algorithm creates 
two bit-strings, cX = 1110000110000 and cY = 0011011111111, by 
juxtaposing the corresponding bits (i.e., 4th and 8th) of every point. 
In Table 2.1, these bit-strings (shown in bold) contain 13 bits (one 
from each object, starting from a and ending with n). The 1's in 
the result of cX&cY=0010000110000, indicate the points that 
dominate c, i.e., c, h and i. Obviously, if there is more than a 
single 1, the considered point is not in the skyline2. The same 
operations are repeated for every point in the dataset, to obtain the 
entire skyline.  
                                                                 
2 The result of "&" will contain several 1's if multiple skyline 

points coincide. This case can be handled with an additional 
"or" operation [TEO01]. 

The efficiency of bitmap relies on the speed of bit-wise 
operations. The approach can quickly return the first few skyline 
points according to their insertion order (e.g., alphabetical order 
in Table 2.1), but cannot adapt to different user preferences, 
which is an important property of a good skyline algorithm 
[KRR02]. Furthermore, the computation of the entire skyline is 
expensive because, for each point inspected, it must retrieve the 
bitmaps of all points in order to obtain the juxtapositions. Also the 
space consumption may be prohibitive, if the number of distinct 
values is large. Finally, the technique is not suitable for dynamic 
datasets where insertions may alter the rankings of attribute 
values.  

2.4 Index  
The “index” approach organizes a set of d-dimensional points into 
d lists such that a point p = (p1, p2, …, pd) is assigned to the ith 
list (1≤i≤d), if and only if, its coordinate pi on the ith axis is the 
minimum among all dimensions, or formally: pi≤pj for all j≠i. 
Table 2.2 shows the lists for the dataset of Figure 1.1. Points in 
each list are sorted in ascending order of their minimum 
coordinate (minC, for short) and indexed by a B-tree. A batch in 
the ith list consists of points that have the same ith coordinate (i.e., 
minC). In Table 2.2, every point of list 1 constitutes an individual 
batch because all x-coordinates are different. Points in list 2 are 
divided into 5 batches {k}, {i,m}, {h,n}, {l} and {f}. 
 

list 1 list 2 
a (1, 9) minC=1 k (9, 1) minC=1 

b (2, 10) minC=2 i (3, 2), m (6, 2) minC=2 
c (4, 8) minC=4 h (4, 3), n (8, 3) minC=3 
g (5, 6) minC=5 l (10, 4) minC=4 
d (6, 7) minC=6 f (7, 5) minC=5 
e (9, 10) minC=9   

Table 2.2: The index approach 

Initially, the algorithm loads the first batch of each list, and 
handles the one with the minimum minC. In Table 2.2, the first 
batches {a}, {k} have identical minC=1, in which case the 
algorithm handles the batch from list 1. Processing a batch 
involves (i) computing the skyline inside the batch, and (ii) among 
the computed points, it adds the ones not dominated by any of the 
already-found skyline points into the skyline list. Continuing the 
example, since batch {a} contains a single point and no skyline 
point is found so far, a is added to the skyline list. The next batch 
{b} in list 1 has minC=2; thus, the algorithm handles batch {k} 
from list 2. Since k is not dominated by a, it is inserted in the 
skyline. Similarly, the next batch handled is {b} from list 1, where 
b is dominated by point a (already in the skyline). The algorithm 
proceeds with batch {i,m}, computes the skyline inside the batch 
that contains a single point i (i.e., i dominates m), and adds i to the 
skyline. At this step the algorithm does not need to proceed 
further, because both coordinates of i are smaller than or equal to 
the minC (i.e., 4, 3) of the next batches (i.e., {c}, {h,n}) of lists 1 
and 2. This means that all the remaining points (in both lists) are 
dominated by i and the algorithm terminates with {a,i,k}.  

Although this technique can quickly return skyline points at 
the top of the lists, it has several disadvantages. First, as with the 
bitmap approach, the order that the skyline points are returned is 
fixed, not supporting user-defined preferences. Second, as 
indicated in [KRR02], the lists computed for d dimensions cannot 
be used to retrieve the skyline on any subset of the dimensions. In 



general, in order to support queries for arbitrary dimensionality 
subsets, an exponential number of lists must be pre-computed.  

2.5 Nearest Neighbor (NN) 
NN uses the results of nearest neighbor search to partition the data 
universe recursively. As an example, consider the application of 
the algorithm to the data set of Figure 1.1, which is indexed by an 
R-tree. NN performs a nearest neighbor query (using an existing 
algorithm such as [RKV95, HS99]) on the R-tree, to find the 
point with the minimum distance (mindist) from the beginning of 
the axes (point o). Without loss of generality, we assume that 
distances are computed according to L1 norm, i.e., the mindist of a 
point p from the beginning of the axes equals the sum of the 
coordinates of p. It can be shown that the first nearest neighbor 
(point i with mindist 5) is part of the skyline. On the other hand, 
all the points in the dominance region of i (shaded area in Figure 
2.2a) can be pruned from further consideration. The remaining 
space is split in two partitions based on the coordinates (ix,iy) of 
point i: (i) [0,ix) [0,∞) and (ii) [0,∞) [0,iy). In Figure 2.2a, the first 
partition contains subdivisions 1 and 3, while the second one, 
subdivisions 1 and 2.  

x

y
b

a

i k

h

g

d

f

e
c

l

o
1 2 3 4 5 6 7 8 9 10

1
2

3

4

5

6

7

8

9

10

m

n

1 2

3 4

 
x

y
b

a

i k

h

g

d

f

e
c

l

o
1 2 3 4 5 6 7 8 9 10

1
2

3

4

5

6

7

8

9

10

m

n

1

3 4

2

 
(a) discovery of point i (a) discovery of point a 

Figure 2.2: Example of NN 

The set of partitions resulting after the discovery of a skyline 
point are inserted in a to-do list. While the to-do list is not empty, 
NN removes one of the partitions from the list and recursively 
repeats the same process. For instance, point a is the nearest 
neighbor in partition [0,ix) [0,∞), which causes the insertion of 
partitions [0,ax) [0,∞) (subdivisions 1 and 3 in Figure 2.2b) and 
[0,ix) [0,ay) (subdivisions 1 and 2 in Figure 2.2b) in the to-do list. 
If a partition is empty, it is not subdivided further. In general, if d 
is the dimensionality of the data-space, each skyline point 
discovered causes d recursive applications of NN. Figure 2.3a 
shows a 3D example, where point n with coordinates (nx,ny,nz) is 
the first nearest neighbor (i.e., skyline point).  
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(c) 2nd query [0,∞) [0,ny) [0,∞) (d) 3rd query [0,∞) [0,∞) [0,nz) 

Figure 2.3: NN partitioning for 3 dimensions 

The NN algorithm will be recursively called for the partitions (i) 
[0,nx) [0,∞) [0,∞) (Figure 2.3b), (ii) [0,∞) [0,ny) [0,∞) (Figure 
2.3c) and (iii) [0,∞) [0,∞) [0,nz) (Figure 2.3d). Among the eight 
space subdivisions shown in Figure 2.3, the 8th one will not be 
searched by any query since it is dominated by point n. Each of 
the remaining subdivisions however, will be searched by two 
queries, e.g., a skyline point in subdivision 2, will be discovered 
by both the 2nd and 3rd query. In general, for d>2, the overlapping 
of the partitions necessitates duplicate elimination. Kossmann et 
al. [KRR02] propose the following elimination methods:  
Laisser-faire: A main memory hash table stores the skyline points 
found so far. When a point p is discovered, it is probed and if it 
already exists in the hash table, p is discarded; otherwise, p is 
inserted into the hash table. The technique is straightforward and 
incurs minimum CPU overhead, but results in very high IO cost 
since large parts of the space will be accessed by multiple queries.  
Propagate: When a point p is found, all the partitions in the to-do 
list that contain p are removed and re-partitioned according to p. 
The new partitions are inserted into the to-do list. Although 
propagate does not discover the same skyline point twice, it 
incurs high CPU cost because the to-do list is scanned every time 
a skyline point is discovered.  
Merge: The main idea is to merge partitions in the to-do, thus 
reducing the number of queries that have to be performed. 
Partitions that are contained in other ones can be eliminated in the 
process. Like propagate, merge also incurs high CPU cost since it 
is expensive to find good candidates for merging.  
Fine-grained Partitioning: The original NN algorithm generates 
d partitions after a skyline point is found. An alternative approach 
is to generate 2d non-overlapping subdivisions. In Figure 2.3 for 
instance, the discovery of point n will lead to 6 new queries (i.e., 
23-2 since subdivisions 1 and 8 cannot contain any skyline 
points). Although fine grain partitioning avoids duplicates, it 
generates the more complex problem of false hits, i.e., it is 
possible that points in one subdivision (e.g., 4) are dominated by 
points in another (e.g., 2) and should be eliminated.  

According to the experimental evaluation of [KRR02], the 
performance of laisser-faire and merge is unacceptable, while fine 
grain partitioning was not implemented due to the false hits 
problem. Propagate is significantly more efficient, but the best 
results were achieved by a hybrid method that combines 
propagate and laisser-faire. Compared to previous algorithms, 
NN is significantly faster for up to 4 dimensions. In particular, 
NN returns the entire skyline faster than index and their difference 
increases (sometimes to orders of magnitudes) with the size of the 
skyline. On the other hand, index has better performance for 
returning skyline points progressively, as it simply scans through 
the extended B-tree to return points that are good in one 
dimension. However, as claimed in [KRR02], these points are not 
representative of the whole skyline because certain dimensions are 
favored. For higher than 3 dimensions, the cost of NN increases 
due to the growth of the overlapping area between partitions and, 
to a lesser degree, due to the performance deterioration of R-trees. 
For these cases, index is also inapplicable due to its extreme space 
requirements (if skylines on subsets of the dimensions are 
allowed). D&C and bitmap are not favored by correlated datasets 
(where the skyline is small) as the overhead of merging and 
loading the bitmaps, respectively, does not pay-off. BNL performs 
well for small skylines, but its cost increases fast with the skyline 
size (e.g., anti-correlated datasets, high dimensionality) due to the 
large number of iterations that must be performed.  



3. BRANCH AND BOUND SKYLINE ALGORITHM 
Despite its performance advantages compared to previous skyline 
algorithms, NN has some serious shortcomings, which are 
presented in Section 3.1. Then, Section 3.2 describes BBS and 
Section 3.3 illustrates its IO optimality. 

3.1 Motivation 
A recursive call of the NN algorithm terminates when the 
corresponding nearest neighbor query does not retrieve any point 
within the corresponding space. Lets call such a query empty, to 
distinguish it from non-empty queries that return results, each 
spawning d new recursive applications of the algorithm (where d 
is the dimensionality of the data space). Figure 3.1 shows a query 
processing tree, where empty queries are illustrated as transparent 
cycles. For the second level of recursion, for instance, the second 
query does not return any results, in which case the recursion will 
not proceed further.  

1NN

1 .....2 d

1 .....2 d

1 .....2 d

1 .....2 d

1 .....2 d
 

Figure 3.1: Recursion tree 

Some of the non-empty queries may be redundant, meaning that 
they return skyline points already found by previous queries. Let s 
be the number of skyline points in the result, e the number of 
empty queries, ne the number of non-empty ones, and r the 
number of redundant queries. Since every non-empty query either 
retrieves a skyline point, or it is redundant, then ne=s+r. 
Furthermore, the number of empty queries in Figure 3.1 equals 
the number of leaf nodes in the recursion tree, i.e., e = ne⋅(d-1)+1. 
By combining the two equations we get e=(s+r)⋅(d-1)+1. Each 
query must traverse a whole path from the root to the leaf level of 
the R-tree before it terminates; therefore, its IO cost is at least h 
node accesses, where h is the height of the tree.  

Summarizing the above observations, the total number of 
accesses for NN is: NANN ≥ (e+s+r)⋅h = (s+r)⋅h⋅d+h > s·h·d. The 
value s·h·d is a rather optimistic lower bound since, for d>2, the 
number r of redundant queries may be very high (depending on 
the duplicate elimination method used), and queries normally 
incur more than h node accesses. On the other hand, as will be 
shown shortly, BBS is at least d times faster than the lower bound 
of NN. 

Another problem of NN concerns the to-do list size, which 
can exceed that of the dataset for as low as 3 dimensions, even 
without considering redundant queries. Consider, for instance, a 
3D uniform dataset (cardinality N) and a skyline query with the 
preference function3 f(x,y,z)=x. The first skyline point n (nx,ny,nz) 
has the smallest x coordinate among all data points, and adds 
partitions Px=[0,nx) [0,∞) [0,∞), Py=[0,∞) [0,ny) [0,∞), Pz=[0,∞) 
[0,∞) [0,nz) in the to-do list. Note that the NN query in Px is 
empty because there is no other point whose x-coordinate is below 
nx. On the other hand, the expected volume of Py (Pz) is ½ 

                                                                 
3 NN (and BBS) can be applied with any monotone function; the 

skyline points are the same, but the order that they are 
discovered may be different. 

(assuming unit axis length on all dimensions), because the nearest 
neighbor is decided solely on x-coordinates, and hence ny (nz) 
distributes uniformly in [0,1]. Following the same reasoning, a 
NN in Py finds the second skyline point that introduces three new 
partitions such that one partition leads to an empty query, while 
the volumes of the other two are ¼. Pz is handled similarly, after 
which the to-do list contains 4 partitions with volumes ¼, and 2 
empty partitions. In general, after the ith level of recursion, the to-
do list contains 2i partitions with volume 1/2i, and 2i-1 empty 
partitions. The algorithm terminates when 1/2i<1/N (i.e., i>logN) 
so that all partitions in the to-do list are empty. Assuming that the 
empty queries are performed at the end, the size of the to-do list 
can be obtained by summing the number e of empty queries at 
each recursion level i:  

log
1

1

2
N

i

i

−

=
∑ = N-1 

The implication of the above equation is that even in 3D, NN may 
behave like a main-memory algorithm (since the to-do list, which 
resides in memory, is at the same order of size as the input 
dataset). Using the same reasoning, for arbitrary dimensionality 
d>2, e= Θ ((d−1)logN), i.e., the to-do list may become orders of 
magnitude larger than the dataset, which seriously limits the 
applicability of NN. In fact, as shown in Section 5, the algorithm 
does not terminate in the majority of experiments involving 4 and 
5 dimensions.    

3.2 Description 
Like NN, BBS is also based on nearest neighbor search.  
Although both algorithms can be used with any data-partition 
method, in this paper we use R-trees due to their simplicity and 
popularity. The same concepts can be applied with other multi-
dimensional access methods for high-dimensional spaces, where 
the performance of R-trees is known to deteriorate. Furthermore, 
as claimed in [KRR02], most applications involve up to 5 
dimensions, for which R-trees are still efficient. For the following 
discussion, we use the set of 2D data points of Figure 1.1, 
organized in the R-tree of Figure 3.2 with node capacity=3. An 
intermediate entry ei corresponds to the minimum bounding 
rectangle (MBR) of a node Ni at the lower level, while a leaf entry 
corresponds to a data point. Distances are computed according to 
L1 norm, i.e., the mindist of a point equals the sum of its 
coordinates and the mindist of a MBR (i.e., intermediate entry) 
equals the mindist of its lower-left corner point.  

x

y
b

a

i k

N2
N1

N3

N4

h

N6

N7

g

d

f

e
c

l

o
1 2 3 4 5 6 7 8 9 10

1
2

3

4

5

6

7

8

9

10

m

n
N5

a b c d e f g h i l k

e1 e2 e3 e4

e6 e7

N1
N2

N6

N3 N4

N7

R

m n

N5

e5

 
Figure 3.2: R-tree 



BBS, similar to previous algorithms for nearest neighbors 
[RKV95, HS99] and convex hulls [BK01], is based on the 
branch-and-bound paradigm.  Specifically, it starts from the root 
node of the R-tree and inserts all its entries (e6, e7) in a heap 
sorted according to their mindist. Then, the entry with the 
minimum mindist (e7) is "expanded". This expansion process 
removes the entry (e7) from the heap and inserts its children (e3, 
e4, e5). The next expanded entry is again the one with the 
minimum mindist (e3), in which the first nearest neighbor (i) is 
found. This point (i) belongs to the skyline, and is inserted to the 
list S of skyline points.  

Notice that up to this step BBS behaves like the best-first 
nearest neighbor algorithm of [HS99]. The next entry to be 
expanded is e6. Although the best-first algorithm would now 
terminate since the mindist (6) of e6 is greater than the distance (5) 
of the nearest neighbor (i) already found, BBS will proceed 
because node N6 may contain skyline points (e.g., a). Among the 
children of e6, however, only the ones that are not dominated by 
some point in S are inserted into the heap. In this case, e2 is 
pruned because it is dominated by point i. The next entry 
considered (h) is also pruned because it is dominated by point i. 
The algorithm proceeds in the same manner until the heap 
becomes empty. Figure 3.3 shows the ids and the mindist of the 
entries inserted in the heap (skyline points are bold and pruned 
entries are shown with strikethrough fonts). 
 

action heap contents S 
access root <e7,4><e6,6> ∅  
expand e7 <e3,5><e6,6><e5,8><e4,10> ∅  
expand e3 <i,5><e6,6><h,7><e5,8> 

<e4,10><g,11> 
{i} 

expand e6 <h,7><e5,8><e1,9><e4,10><g,11> {i} 
expand e1 <a,10> <e4,10><g,11><b,12><c,12> {i,a} 
expand e4 <k,10><g,11><b,12><c,12><l,14> {i,a,k} 

Figure 3.3: Heap Contents 

The pseudo-code for BBS is shown in Figure 3.4. Notice that an 
entry is checked for dominance twice: before it is inserted in the 
heap and before it is expanded. The second check is necessary 
because an entry (e.g., e5) in the heap may become dominated by 
some skyline point discovered after its insertion (therefore it does 
not need to be visited). 
 
Algorithm BBS (R-tree R) 
1. S=∅  // list of skyline points 
2. insert all entries of the root R in the heap  
3. while heap not empty 
4.  remove top entry e 
5.  if e is dominated by some point in S discard e 
6.     else // e is not dominated  
7.   if e is an intermediate entry 
8.       for each child ei of e 
9.                           if ei is not dominated by some point in S 
10.                             insert ei into heap 
11.            else // e is a data point 
12.                     insert ei into S 
13. end while  
End BNN 

Figure 3.4: BBS algorithm 

Next we present a proof of correctness for BBS.   

■ Lemma 1: BBS visits (leaf and intermediate) entries of an R-
tree in ascending order of their distance to the origin of the axis.  

The proof is straightforward since the algorithm always visits 
entries according to their mindist order preserved by the heap. 
■ Lemma 2: Any data point added to S during the execution of the 
algorithm is guaranteed to be a final skyline point. 

Proof: Assume, on the contrary, that point pj was added into 
S, but it is not a final skyline point. Then, pj must be dominated by 
a (final) skyline point, say, pi, whose coordinate on any axis is not 
larger than the corresponding coordinate of pj, and at least one 
coordinate is smaller (since pi and pj are different points). This in 
turn means that mindist(pi)< mindist(pj). By Lemma 1, pi must be 
visited before pj. In other words, at the time pj is processed, pi 
must have already appeared in the skyline list, and hence pj should 
be pruned, which contradicts the fact that pj was added in the list.      
■ Lemma 3: Every data point will be examined, unless one of its 
ancestor nodes has been pruned.  

Proof:  The proof is obvious since all entries that are not 
pruned by an existing skyline point are inserted into the heap and 
examined.   

Lemmas 2 and 3 guarantee that if BBS is allowed to execute 
until its termination, it will correctly return all skyline points, 
without reporting any false hits. An important issue regards the 
dominance checking, which can be expensive if the skyline 
contains numerous points. In order to speed up this process we 
insert the skyline points found in a main-memory R-tree. 
Continuing the example of Figure 3.2, for instance, only points i, 
a, k will be inserted (in this order) to the main-memory R-tree. 
Checking for dominance can now be performed in a way similar 
to traditional window queries. An entry (i.e., node MBR or data 
point) is dominated by a skyline point p, if its lower left point falls 
inside the dominance region of p, i.e., the rectangle defined by p 
and the edge of the universe.  

Figure 3.5 shows the dominance regions for points i, a, k and 
two entries; e is dominated by i and k, while e' is not dominated 
by any point (therefore is should be expanded). Notice that, in 
general, most dominance regions will cover a large part of the 
data space, in which case there will be significant overlap between 
the intermediate nodes of the main-memory R-tree. Unlike 
traditional window queries that must retrieve all results, this is not 
a problem here because we only need to retrieve a single 
dominance region in order to determine that the entry is 
dominated (by at least one skyline point).    
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Figure 3.5: Entries of the main-memory R-tree 

As a conclusion of this section we informally evaluate BBS with 
respect to the criteria of [HAC+99, KRR02]:  

(i) Progressiveness: the first results should be output to the 
user almost instantly and the algorithm should produce more 
and more results the longer the execution time.  



(ii) Absence of false misses: given enough time, the 
algorithm should generate the entire skyline. 
(iii) Absence of false hits: the algorithm should not insert into 
S points that will be later replaced. 
(iv) Fairness: the algorithm should not favor points that are 
particularly good in one dimension.  
(v) Incorporation of preferences: the algorithm should allow 
the users to determine the order according to which skyline 
points are returned.  
(vi) Universality: the algorithm should be applicable to any 
dataset distribution and dimensionality, using some standard 
index structure. 

BBS satisfies property (i) as it returns skyline points instantly in 
ascending order of their distance to the beginning of the axes, 
without having to visit a large part of the R-tree. Lemma 3 ensures 
property (ii), since every data point is examined unless some of its 
ancestors is dominated (in which case the point is dominated too). 
Lemma 2 guarantees property (iii). Property (iv) is also fulfilled 
because BBS outputs points according to their mindist, which 
takes into account all dimensions. Regarding user preferences (v), 
as we discuss in Section 4.1, the user can specify the order of 
skyline points to be returned by appropriate preference functions. 
Furthermore, BBS also satisfies property (vi) since it does not 
require any specialized indexing structure, but (like NN) it can be 
applied with R-trees or any other data-partition method. 
Furthermore, the same index can be used for any subset of the d-
dimensions that may be relevant to different users.  

3.3 Analysis 
In this section we first prove that BBS is IO optimal, meaning that 
(i) it visits only the nodes that may contain skyline points and (ii) 
it does not access the same node twice. Then, we provide a 
qualitative comparison with NN in terms of node accesses and 
space overhead (i.e., the heap versus the to-do list sizes).  

Central to the analysis of BBS is the concept of skyline 
search region (SSR), i.e., the part of the data space that may 
contain skyline points. Consider for instance the running example 
(with skyline points i, a, k). The SSR is the area (shaded in Figure 
3.5) defined by the skyline and the two axes. 
■ Lemma 4: Any skyline algorithm based on R-trees must access 
all the nodes whose MBRs intersect the SSR.  

For instance, although entry e' in Figure 3.5 does not contain 
any skyline points, this cannot be determined unless the node of e' 
is visited.  
■ Lemma 5: If an entry e does not intersect the SSR, then there is 
a skyline point p whose distance from the origin of the axes is 
smaller than the mindist of e.  

Proof: Since e does not intersect the SSR, it must be 
dominated by at least a skyline point p, meaning that p dominates 
the lower-left corner point of e. This implies that the distance of p 
to the origin of the axes is smaller than the mindist of e.    
■Theorem: The number of node accesses performed by BBS is 
optimal. 

Proof: First we prove that BBS only accesses nodes that may 
contain skyline points. Assume, to the contrary, that the algorithm 
also visits an entry (let it be e in Figure 3.5) that does not intersect 
the SSR. Clearly, e should not be accessed because it cannot 
contain skyline points. Consider a skyline point that dominates e 
(e.g., k). Then, by Lemma 5, the distance of k to the origin is 
smaller than the mindist of e. According to Lemma 1, BBS visits 
the entries of the R-tree in ascending order of their mindist to the 

origin. Hence, k must be processed before e, meaning that e will 
be pruned by k, which contradicts the fact that e is visited.  

In order to complete the proof we only need to show that an 
entry is not visited multiple times. This is straightforward because 
entries are inserted into the heap (and expanded) at most once, 
according to their mindist.    ■ 

To quantify the actual cost of BBS, next we derive the 
number of node accesses for computing the entire skyline. Let 
Pi(ξ, ψ) be the probability that the MBR of a level-i node 
intersects the rectangle with corner points (0, 0) and (ξ, ψ); then, 
the node density Di(ξ, ψ) at level-i is the derivative of Pi(ξ, ψ), or 
formally ( ) ( )2, , /i iD Pξ ψ ξ ψ ξ ψ= ∂ ∂ ∂  [TSS00]. The number NAi of 

node accesses at the ith level (leaf nodes are at level 0) equals: 

1i intr ii

N
NA P

f −+= , and
 

( ) ( ), ,intr i ix y SSRP D x y dxdy− ∈= ∫ ∫  

where N is the cardinality of the dataset, f the node fan-out (N/f i+1 
is the total number of nodes at level i), and Pintr-i is the probability 
that a level-i node intersects the SSR. As analyzed in [TSS00], the 
value of Di(ξ, ψ) depends on the data density at location (ξ, ψ), 
i.e., the  number of nodes covering point (ξ, ψ) increases with the 
data D(ξ, ψ) density around (ξ, ψ). The crucial observation is that, 
D(ξ, ψ)=0 for every (ξ, ψ) ∈  SSR, because there cannot be any 
point in SSR (otherwise such a point would appear on the 
skyline). It follows that Di(ξ, ψ) is also low (but may not be zero, 
see [TSS00] for deriving Di(ξ, ψ) from D(ξ, ψ)), resulting in a 
small NAi. The total number NABBS of node accesses performed by 
BBS is the sum of accesses NAi at each level. Similar conclusions 
also hold for higher dimensionality.  

Assuming that each leaf node visited contains some skyline 
point, NABBS is below s·h. This bound corresponds to a rather 
pessimistic case, where BBS has to access a complete path for 
each skyline point. Many skyline points, however, may be found 
in the same leaf nodes, or in the same branch of a non-leaf node 
(e.g., the root of the tree!), so that these nodes only need to be 
accessed once. Therefore, BBS is at least d (=s·h·d / s·h) times 
faster than NN. In practice, for d>2, the speed-up is much larger 
than d (several orders of magnitude) as NANN = s·h·d does not take 
into account the number r of redundant queries. 

Finally, we compare the memory overhead of the heap in 
BBS and the to-do list in NN. The number of entries nheap in the 
heap is at most (f−1)· NABBS. This is a pessimistic upper bound, 
because it assumes that a node expansion removes from the heap 
the expanded entry and inserts all its f children (in practice most 
children will be dominated by some discovered skyline point and 
pruned). Since for independent dimensions the expected number 
of skyline points is s=Θ((lnN)d−1/(d-1)!) [B89], nheap ≤ (f−1)· 
NABBS ≈ (f−1) · h · s ≈ (f−1)· h ·(lnN)d−1/(d-1)!. For d≥3 and typical 
values of N and f (e.g., N=100k and f≈100), the heap size is much 
smaller that the corresponding to-do list size, which as discussed 
in Section 3.1 can be in the order of (d−1)logN. Furthermore, a 
heap entry stores d+2 numbers (i.e., entry id, mindist, and the 
coordinates of the lower-left corner), as opposed to 2d numbers 
for to-do list entries (i.e., d-dimensional ranges).  

In summary, the main-memory requirement of BBS is at the 
same order as the size of the skyline, since both the heap and the 
main-memory R-tree sizes are at this order. This is a reasonable 
assumption because (i) skylines are normally small and (ii) 
previous algorithms, such as index, are based on the same 
principle. Nevertheless, specialized heap management techniques 
(e.g., [HS99]) can be applied for very limited memory.   



4. VARIATIONS OF SKYLINE QUERIES 
Next we propose novel variations of skyline queries and illustrate 
how BBS can be applied for their processing. In particular, 
Section 4.1 discusses ranked skylines, Section 4.2 constrained 
skyline queries, Section 4.3 dynamic skylines, and Section 4.4 
enumerating and K-dominating queries. 

4.1 Ranked skyline queries  
Given a set of points in the d-dimensional space [0, 1]d, a ranked 
(top-K) skyline query (i) specifies a parameter K, and a preference 
function f which is monotone on each attribute, (ii) and returns the 
K skyline points p that have the minimum score according to the 
input function. Consider the running example, where K=2 and the 
preference function is f(x,y)=x+3y2. The output skyline points 
should be <k,12>, <i, 15> in this order (the number with each 
point indicates its score).  

BBS can easily handle such queries by modifying the mindist 
definition to reflect the preference function (i.e., the mindist of a 
point with coordinates x and y equals x+3y2). The mindist of an 
intermediate entry equals the score of its lower left point. 
Furthermore, the algorithm terminates after exactly K points have 
been inserted into S. Due to the monotonicity of f, it is easy to 
prove that the points returned are skyline points. The only change 
with respect to the original algorithm is the order of entries 
visited, which does not affect the correctness or optimality of BBS 
because in any case an entry will be considered after all entries 
that dominate it.  

None of the previous skyline algorithms (see Section 2) 
supports ranked skyline efficiently. Specifically, BNL, D&C, 
bitmap, and the index methods require first retrieving the entire 
skyline, sorting the skyline points by their scores, and then 
outputting the best K points. On the other hand, although NN can 
also be used with any monotone function, its application to ranked 
skyline may incur almost the same cost as that of a complete 
skyline. This is because, due its divide-and-conquer nature, it is 
difficult to establish the termination criterion. If, for instance, 
K=2, NN must perform d queries after the first nearest neighbor 
(skyline point) is found, compare their results, and return the one 
with the minimum score. The situation is more complicated when 
K is large because the output of numerous queries must be 
compared.  

4.2 Constrained skyline queries  
Given a set of constraints, a constrained skyline query returns the 
most interesting points in the data space defined by the 
constraints. Typically, each constraint is expressed as a range 
along a dimension and the conjunction of all constraints forms a 
hyper-rectangle (referred to as the constraint region) in the d-
dimensional attribute space. Consider the hotel example, where a 
user is interested only in hotels whose price (y- axis) is in the 
range 4-7. The skyline in this case contains points g, f and l 
(Figure 4.1), as they are the most interesting hotels in the 
specified range.  

BBS can easily process such queries. The only difference 
with respect to the original algorithm is that entries not 
intersecting the constraint region are pruned (i.e., not inserted in 
the heap).  Figure 4.2 shows the contents of the heap during the 
processing of the query in Figure 4.1. The NN algorithm can also 
support constrained skylines with a similar modification. In 
particular, the first nearest neighbor (e.g., g) is retrieved in the 

constraint region using constrained nearest neighbor search 
[FSAA01]. Then, each space subdivision is the intersection of the 
original subdivision (area to be searched by NN for the un-
constrained query) and the constraint region. 
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Figure 4.1: Constrained query example 

 
action heap contents S 

access root <e7,4><e6,6> ∅  
expand e7 <e3,5><e6,6><e4,10> ∅  
expand e3 <e6,6> <e4,10><g,11> ∅  
expand e6 <e4,10><g,11><e2,11> ∅  
expand e4 <g,11><e2,11><l,14> {g} 
expand e2 <f,12><d,13><l,14> {g,f,l} 
Figure 4.2: Heap contents for constrained query 

The index method can be modified for constrained skylines, by 
processing the batches starting from the beginning of the 
constraint ranges (instead of the top of the lists). Bitmap can avoid 
loading the juxtapositions (see Section 2.3) for points that do not 
satisfy the query constraints. D&C may discard, during the 
partitioning step, points that do not belong to the constraint 
region. For BNL, the only difference with respect to regular 
skylines is that only points in the constrained region are inserted 
in the self-organizing list. 

4.3 Dynamic skyline queries 
Assume a database containing points in d-dimensional space with 
axes d1, d2, …, dd. A dynamic skyline query specifies m dimension 
functions f1, f2, …, fm such that each function fi (1≤i≤m) takes as 
parameters the coordinates of the data points along a subset of the 
d axes. The goal is to return the skyline in the new data space with 
dimensions defined by f1, f2, …, fm. Consider a database that stores 
the following information for each hotel: (i) its x-, (ii) y- 
coordinates, and (iii) its price (i.e., the database contains 3 
dimensions). Then, a user specifies his/her current location (ux,uy), 
and requests the most interesting hotels, where preference must 
take into consideration the hotels' proximity to the user (in terms 
of Euclidean distance) and the price. Each point p with co-
ordinates (px,py,pz) in the original 3D space is transformed to a 
point p' in the 2D space with coordinates (f1(px,py), f2(pz)), where 
the dimension functions f1 and f2 are defined as: 

   ( ) ( ) ( )22
,1 x y x x y yf p p p u p u= − + − , and f2(pz)= pz. 

The terms original and dynamic space refer to the original d-
dimensional data space and the space with computed dimensions 
(from f1, f2, …, fm), respectively. Correspondingly, we refer to the 
coordinates of a point in the original space as original 
coordinates, while to those of the point in the dynamic space as 
dynamic coordinates.  



BBS is applicable to dynamic skylines by expanding entries 
in the heap according to their mindist in the dynamic space (which 
is computed on-the-fly when the entry is considered for the first 
time). In particular, the mindist of a leaf entry (data point) e with 

original coordinates (ex,ey,ez), equals ( ) ( )22

x x y y ze u e u e− + − + , 

and the mindist of an intermediate entry e whose MBR has ranges 
[ex0,ex1] [ey0,ey1] [ez0,ez1] is computed as mindist([ex0,ex1] [ey0,ey1], 
(ux,uy))+ez0, where the first term equals the mindist between point 
(ux,uy) to the 2D rectangle [ex0,ex1] [ey0,ey1]. Furthermore, notice 
that the concept of dynamic skylines can be employed in 
conjunction with ranked and constraint queries (i.e., find the top-5 
hotels within 1km, given that the price is twice as important as the 
distance). BBS can process such queries by appropriate 
modification of the mindist definition (the z coordinate is 
multiplied by 2) and by constraining the search region 
(f1(x,y)≤1km).  

Regarding the applicability of the previous methods, BNL 
still applies because it evaluates every point, whose dynamic 
coordinates can be computed on-the-fly. D&C and NN can also be 
modified for dynamic queries with the transformations described 
above, suffering, however, similar problems of the original 
algorithms. Bitmap and index are not applicable because these 
methods rely on pre-computation, which provides little help when 
the dimensions are defined dynamically.  

4.4 Enumerating and K-dominating queries 
Enumerating queries return, for each skyline point p, the number 
of points dominated by p. This information may be relevant for 
some applications as it provides some measure of "goodness" for 
the skyline points. In the running example, for instance, hotel i, 
may be more interesting than the other skyline points since it 
dominates 9 hotels as opposed to 2 for hotels a and k. Lets call 
num(p) the number of points dominated by point p. A 
straightforward approach to process such queries involves two 
steps: (i) first compute the skyline and (ii) for each skyline point p 
apply a query window in the data R-tree and count the number of 
points num(p) falling inside the dominance region of p. Notice 
that since all (except for the skyline) points are dominated, all the 
nodes of the R-tree will be accessed by some query. Furthermore, 
due to the large size of the dominance regions, numerous R-tree 
nodes will be accessed by several window queries. In order to 
avoid multiple node visits, we apply the inverse procedure, i.e., 
we scan the data file and for each point we perform a query in the 
main-memory R-tree to find the dominance regions that contain it. 
The corresponding counters num(p) of the skyline points are then 
increased accordingly.  

An interesting variation of the problem is the K-dominating 
query, which retrieves the K points that dominate the largest 
number of other points. Strictly speaking, this is not a skyline 
query, since the result does not necessarily contain skyline points. 
If K=3, for instance, the output should include hotels i, h and m, 
since num(i)=9, num(h)=7 and num(m)=5. In order to obtain the 
result, we first perform an enumerating query that returns the 
skyline points and the number of points that they dominate. This 
information for the first K=3 points is inserted into a list sorted 
according to num(p), i.e., list = <i,9>, <a,2>, <k,2>. Clearly, the 
first element of the list (point i) is the first result of the 3-
dominating query. Any other point potentially in the result, should 
be in the dominance region of i, but not in the dominance region 
of a, or k (i.e., in the shaded area of Figure 4.3a); otherwise, it 

would dominate fewer points than a, or k. In order to retrieve the 
candidate points we perform a local skyline query S' in this region 
(i.e., a constrained skyline query), after removing i from S and 
outputting it to the user. S' contains points h and m. The new 
skyline S1 = (S-{i}) ∪  S' is shown in Figure 4.3b.  
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(a) Search region for the 2nd point (b) Skyline S1 after removal of i 
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(c) Search region for the 3nd  point (b) Skyline S2 after removal of h 

Figure 4.3: Example of 3-dominating query 

Since h and m do not dominate each other, they may each 
dominate at most 7 points (i.e., num(i)-2), meaning that they are 
candidates for the 3-dominating query. In order to find the actual 
number of points dominated, we perform a window query in the 
data R-tree using the dominance regions of h and m as query 
windows. After this step, <h,7> and <m,5> replace the previous 
candidates <a,2>, <k,2> in the list. Point h is the second result of 
the 3-dominating query and is output to the user. Then, the 
process is repeated for the points that belong to the dominance 
region of h, but not in the dominance regions of other points in S1 
(i.e., shaded area in Figure 4.3c). The new skyline S2 = (S1-
{h})∪ {c,g} is shown in Figure 4.3d. Points c and g may dominate 
at most 5 points each (i.e., num(h)-2), meaning that they cannot 
outnumber m. Hence, the query terminates with <i,9> <h,7> 
<m,5> as the final result. In general, the algorithm can be thought 
of as skyline "peeling", since it computes local skylines at the 
points that have the largest dominance. Figure 4.4 shows the 
pseudo-code for K-dominating queries.  

Obviously all existing algorithms can be employed for 
enumerating queries, since the only difference with respect to 
regular skylines is the second step (i.e., counting the number of 
points dominated by each skyline point). Actually, the bitmap 
approach can avoid scanning the actual dataset, since information 
about num(p) for each point p, can be obtained directly by 
appropriate juxtapositions of the bitmaps. On the other hand, K-
dominating queries require an effective mechanism for skyline 
"peeling", i.e., discovery of skyline points in the dominance 
region of the last point removed from the skyline. Since this 
requires the application of a constrained skyline query, the 
relative performance of algorithms is similar to that for 
constrained skylines, discussed in Section 4.2.   



Algorithm K-dominating_BBS (R-tree R, int K) 
1. compute skyline S using BBS 
2. for each point in S compute the number of dominated points  
3. insert the top-K points of S in list sorted on num(p)  
3. counter=0  
4. while counter < K 
5.     p = remove first entry of list 
6.     output p 
7.     S' = set of local skyline points in the dominance region of p 
8.     if (num(p)-|S'|)> num(last element of list)  
          // S' may contain candidate points 
9.          for each point p' in S' 
10.            find num(p') // perform a window query in data R-tree 
11.            if num(p') > num(last element of list)  
12.                update list // remove last element and insert p' 
13.   counter=counter+1;    
14. end while  
End K-dominating_BBS 

Figure 4.4: K-dominating_BBS algorithm 

5. EXPERIMENTAL EVALUATION  
In this section we verify the effectiveness and efficiency of BBS 
by comparing it against NN under a variety of settings. NN 
applies a combination of laisser-faire and propagate for duplicate 
elimination, since as discussed in [KRR02], it gives the best 
results. Specifically, only the first 20% of the to-do list is searched 
for duplicates using propagate and the rest of the duplicates are 
handled with laisser-faire. Following the common methodology 
in the literature, we employ independent (uniform) and anti-
correlated datasets with dimensionality d in the range [2,5] and 
cardinality N in the range [100K, 10M]. Datasets are indexed by 
R*-trees [BKSS90] using a page size of 4Kbytes resulting in node 
capacities between 204 (d=2) and 94 (d=5). A Pentium 4 CPU at 
2.4GHz with 512Mbytes Ram is used for all experiments.   

We evaluate several factors that affect the performance of the 
algorithms. In particular, Sections 5.1 and 5.2 study the effect of 
dimensionality and cardinality, respectively. Section 5.3 compares 
the progressive behavior of the algorithms and, finally, Section 
5.4 evaluates the performance of BBS and NN on constrained 
queries. We do not perform experiments with the other query 
types as their cost can be predicted by the presented results. In 
particular, the cost of a top-K skyline query is the same as that of 
a progressive query, in which BBS terminates after the first K 
points are returned. For dynamic skylines the only difference with 
respect to regular queries is in the computation of mindist. 
Enumerating queries, in addition to a regular skyline query, 
require a scan of the data file. Finally, K-dominating queries 
combine enumerating and constrained queries.  

5.1 The effect of dimensionality 
In order to study the effect of dimensionality we use the datasets 
with cardinality N=1M and vary d between 2 and 5. Figure 5.1 
shows the number of node accesses as a function of 
dimensionality, for independent (5.1a) and anti-correlated (5.1b) 
datasets. Figure 5.2 illustrates a similar experiment that compares 
the algorithms in terms of CPU-time under the same settings. NN 
could not terminate successfully for d>4 in case of independent, 
and for d>3 in case of anti-correlated datasets due the prohibitive 
size of the to-do list (to be discussed shortly). BBS clearly 
outperforms NN and the difference increases fast with 

dimensionality. The degradation of NN is caused mainly by the 
growth of the number of partitions (i.e., queries), as well as the 
number of duplicates. The degradation of BBS is due to the 
growth of the skyline and the poor performance of R-trees in high 
dimensions. Notice that these factors also influence NN, but their 
effect is small compared to the inherent deficiencies of the 
algorithm itself. Furthermore, although the existence of an LRU 
buffer will reduce the node accesses of NN (BBS will not be 
affected since it visits every node at most once), its disadvantage 
compared to NN will still be very large due to the CPU overhead.  
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Figure 5.1: Node accesses vs. d (N=1M) 
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Figure 5.2: CPU-time vs. d (N=1M) 

Figure 5.3 shows the maximum sizes (in Kbytes) of the heap, the 
to-do list and the dataset, as a function of dimensionality. For 
d=2, the to-do list is smaller than the heap, and both are negligible 
compared to the size of the dataset. For d=3, however, the to-do 
list surpasses the heap (for independent data) and the dataset (for 
anti-correlated data). Clearly, the maximum size of the to-do list 
exceeds the main-memory of most existing systems for d≥4 (anti-
correlated data), which also explains the missing numbers about 
NN in the diagrams for high dimensions. Notice that [KRR02] 
report the cost of NN for returning up to the first 500 skyline 
points using anti-correlated data in 5 dimensions. NN can return a 
number of skyline points (but not the complete skyline), because 
the to-do list does not reach its maximum size until a sufficient 
number of skyline points have been found (and a large number of 
partitions have been added). This will be further discussed in 
Section 5.3, where we study the size of the to-do list as a function 
of the points returned.    
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Figure 5.3: Heap and to-do list size vs. d (N=1M) 

Figure 5.4 compares the CPU-time (as a function of d) of BBS 
using main-memory R-trees and an alternative implementation 
that exhaustively scans the list of current skyline points to 



determine if an entry is dominated. The gain of R-trees increases 
with the dimensionality and is higher for anti-correlated data, 
because in both cases the number of skyline points (and 
dominance checks) increases. 
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Figure 5.4: Main-memory R-tree gains vs. d (N=1M) 

5.2 The effect of cardinality 
Figures 5.5 and 5.6 show the number of node accesses and CPU 
time, respectively, versus the cardinality for 3D datasets. Even 
though the effect of cardinality is not as important as that of 
dimensionality, in all cases BBS is several orders of magnitude 
faster than NN. For anti-correlated data, NN does not terminate 
successfully for N≥5M, again due to the prohibitive size of the to-
do list. Some irregularities in the diagrams (a small dataset may be 
more expensive than a larger one) are due to the positions of the 
skyline points and the order in which they are discovered. If for 
instance, the first nearest neighbor is very close to the beginning 
of the axes, both BBS and NN will prune a large part of their 
respective search spaces (and reduce the total cost).  
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Figure 5.5: Node accesses vs. N (d=3) 
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Figure 5.6: CPU-time vs. N (d=3) 

5.3 Progressive behavior 
Next we evaluate the speed of the algorithms in returning skyline 
points incrementally. Figures 5.7 and 5.8 show the node accesses 
and CPU time of BBS and NN as a function of the points returned 
for datasets with N=1M and d=3 (the number of points in the final 
skyline is 119 and 977, for independent and anti-correlated 
datasets, respectively). Both algorithms return the first point with 
the same cost (since they both apply nearest neighbor search to 
locate it). Then, BBS starts to gradually outperform NN and the 
difference increases with the number of points returned.  
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Figure 5.7: Node accesses vs. # points returned (N=1M, d=3) 
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Figure 5.8: CPU-time vs. # points returned (N=1M, d=3) 

Figure 5.9 presents an interesting experiment that compares the 
sizes of the heap and to-do lists as a function of the points 
returned. The heap reaches its maximum size at the beginning of 
BBS, whereas the to-do list towards the end of NN. This happens 
because before BBS discovers the first skyline point, it inserts all 
the entries of the visited nodes in the heap (since no entry can be 
pruned by existing skyline points). The more skyline points are 
discovered, the more heap entries are pruned, until the heap 
eventually becomes empty. On the other hand, the to-do list size is 
dominated by empty queries, which occur towards the late phases 
NN when the space subdivisions become too small to contain any 
points. Thus, NN could still be used to return a number of skyline 
points (but not the complete skyline) even for relatively high 
dimensionality.   

to-do list heap 

number of reported points

0

2

4

6

8

10

0 20 40 60 80 100 119

size (Kbytes)

 
0

1e-1

1e+0

1e+1

1e+2

1e+3

1e+4

1e+5

0 200 400 600 800 977
number of reported points

size (Kbytes)

 
Independent Anti-correlated 

Figure 5.9: Heap, to-do list vs. # points returned (N=1M, d=3) 

5.4 Constrained skyline queries 
Finally, we present a comparison between BBS and NN on 
constrained skyline queries. Figure 5.10 shows the node accesses 
of BBS and NN as a function of the constraint region volume 
(N=1M, d=3), which is measured as a percentage of the volume of 
the data universe. The locations of constraint regions are 
uniformly generated and the results are computed by taking the 
average of 50 queries. Again BBS is several orders of magnitude 
faster than NN (similar results are obtained for CPU-time). The 
counter-intuitive observation here is that constrained queries are 
usually more expensive than regular skylines. To verify this 
consider Figure 5.11a that illustrates the node accesses of BBS on 
independent data, when the volume of the constraint region ranges 
between 98% and 100% (i.e., regular skyline). Even a range very 



close to 100% is much more expensive than a regular query. This 
can be explained by the skyline search region (SSR). As discussed 
in Section 3.3, for regular queries, the number of nodes that 
intersect the SSR (and must be visited by BBS) is very small. On 
the other hand, a constrained query has to visit many nodes at the 
boundary of the constraint region since they may all contain 
skyline points. Similar observations hold for anti-correlated data 
and NN (see Figure 5.11b).  
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Figure 5.10: Node accesses vs. constraint region (N=1M, d=3) 
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Figure 5.11: Node accesses vs. constraint region 98-100%  
(Independent, N=1M, d=3) 

6. CONCLUSION 
All existing database algorithms for skyline computation have 
several deficiencies, which severely limit their applicability. BNL 
and D&C are very sensitive to main memory size and the dataset 
characteristics. Furthermore, neither algorithm is progressive. 
Bitmap is applicable only for datasets with small attribute 
domains and cannot efficiently handle updates. Index (like 
bitmap) does not support user-defined preferences and cannot be 
used for skyline queries on a subset of the dimensions. Although 
NN was presented as a solution to these problems, it introduces 
new ones, namely poor performance and prohibitive space 
requirements for more than three dimensions.    

We believe that BBS overcomes all these deficiencies since 
(i) it is efficient for both progressive and complete skyline 
computation, independently of the data characteristics 
(dimensionality, distribution), (ii) it can easily handle user 
preferences and process numerous alternative  skyline queries 
(e.g., ranked, constrained skylines), (iii) it does not require any 
pre-computation (besides building the R-tree), (iv) it can be used 
for any subset of the dimensions, and (v) it has limited main-
memory requirements.  

Although in this implementation of BBS we used R-trees in 
order to perform a direct comparison with NN, the same concepts 
are applicable to any data-partition access method. In the future, 
we plan to investigate alternatives for high dimensional spaces, 
where R-trees are inefficient. Another interesting topic is the fast 
retrieval of approximate skyline points, i.e., points that do not 
necessarily belong to the skyline but are very "close". Finally, we 
want to explore new variations of skyline queries, in addition to 
the ones proposed in Section 4.  
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